
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

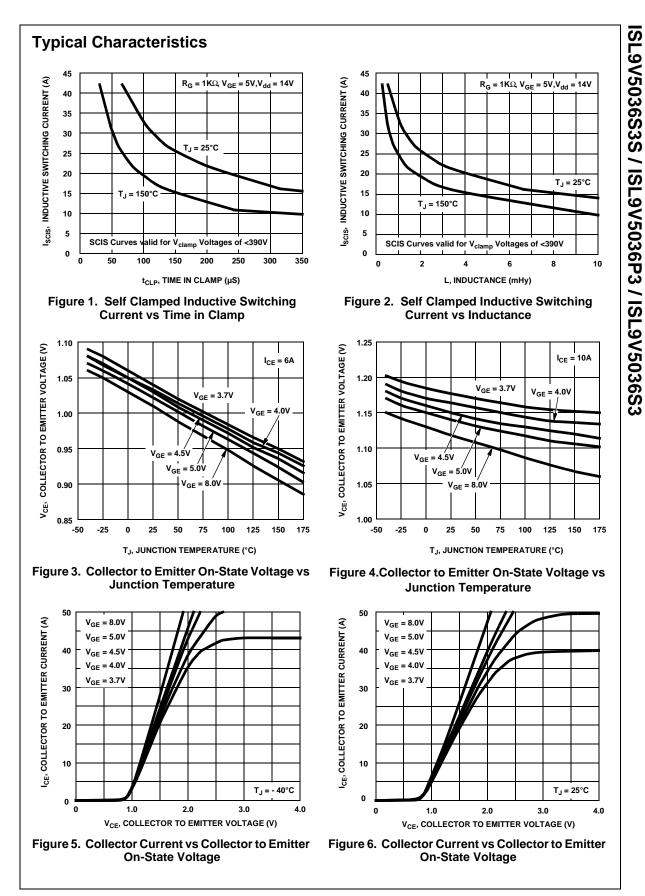
T_{pkg} ESD Max Lead Temp for Soldering (Package Body for 10s)

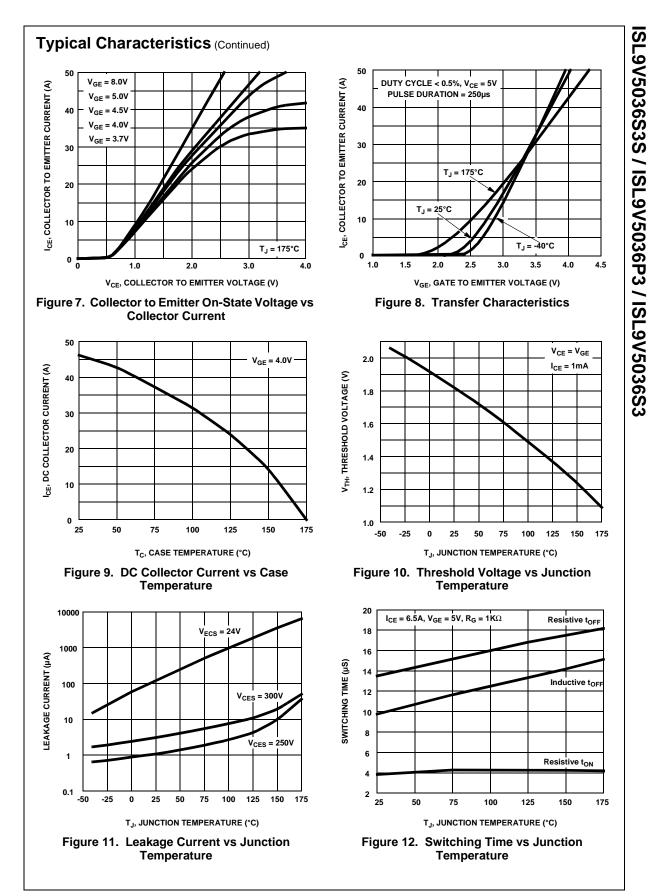
Electrostatic Discharge Voltage at 100pF, 1500 Ω

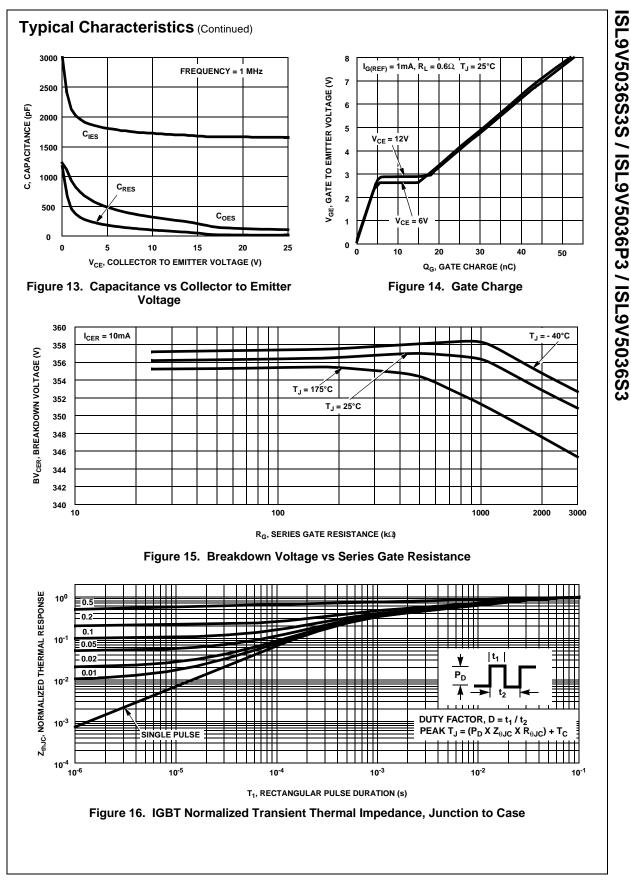
ISL9V5036S3S / ISI9V5036P3 / ISL9V5036S3 Rev. C4, November 2009

260

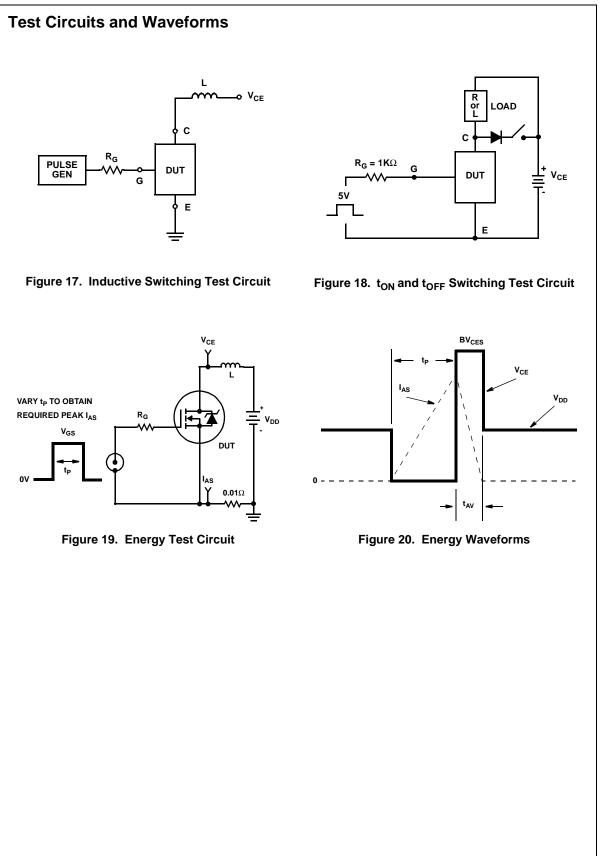
4

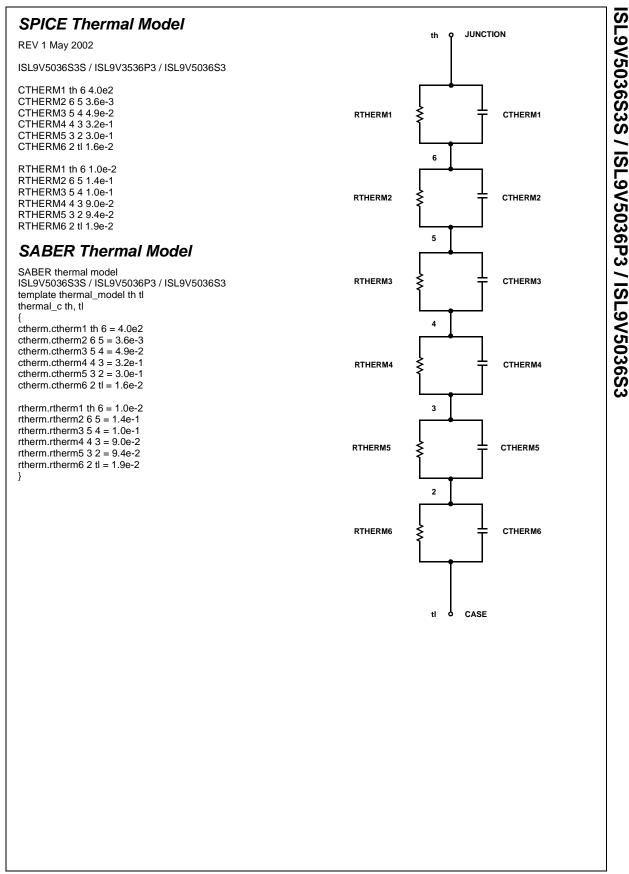

°C


kV


Device Marking		Device		Package	Reel Size	•	Tape Width		Quantity
V5036S V5036P V5036S		ISL9V5036S3ST ISL9V5036P3 ISL9V5036S3		TO-263AB	-220AA Tube -262AA Tube		24mm N/A N/A N/A		800
				TO-220AA					50 50 50
				TO-262AA					
V50	V5036S ISL9V5036S3S		TO-263AB						
ectrica	al Chara	acteristics T _A =	= 25°C un	less otherwise n	oted				
Symbol		Parameter		Test Conditions		Min	Тур	Мах	Units
f State	Characte	eristics							
BV _{CER}	Collector to Emitter Breakdown Voltage		$I_{C} = 2mA, V_{GE} = 0,$ $R_{G} = 1K\Omega, See Fig. 15$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		330	360	390	V	
BV _{CES}	Collector to Emitter Breakdown Voltage		$I_{C} = 10mA, V_{GE} = 0,$ $R_{G} = 0, See Fig. 15$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		360	390	420	V	
BV _{ECS}	Emitter to	Emitter to Collector Breakdown Voltage		$I_C = -75$ mA, $V_{GE} = 0$ V, $T_C = 25$ °C		30	-	-	V
BV_{GES}	Gate to Er	mitter Breakdown Vol	tage	$I_{GES} = \pm 2mA$		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current			V _{CER} = 250V, R _G = 1KΩ See Fig. 11	$T_C = 25^{\circ}C$	-	-	25	μA
			T _C = 150°C		-	-	1	mA	
I _{ECS}	Emitter to	Emitter to Collector Leakage Current		$V_{EC} = 24V$, See	-	-	-	1	mA
_				Fig. 11	T _C = 150°C	-	-	40	mA
R ₁	Series Gate Resistance					75			
R ₂ n State	Gate to Er	mitter Resistance				- 10K	-	- 30K	ΩΩ
n State	Characte	mitter Resistance	Voltage	I _C = 10A, V _{GE} = 4.0V	T _C = 25°C, See Fig. 4		- - 1.17	- 30K 1.60	
n State	Characte Collector t	mitter Resistance		•			-	I	Ω
N State (V _{CE(SAT)} V _{CE(SAT)}	Characte Collector t	mitter Resistance ristics to Emitter Saturation ¹ to Emitter Saturation ¹		$V_{GE} = 4.0V$ $I_C = 15A,$	See Fig. 4	10K -	- 1.17	1.60	Ω V
N State (V _{CE(SAT)} V _{CE(SAT)}	Characte Collector t Collector t	mitter Resistance		$V_{GE} = 4.0V$ $I_C = 15A,$	See Fig. 4 T _C = 150°C	10K -	- 1.17	1.60	Ω V
n State V _{CE(SAT)} V _{CE(SAT)} /namic	Characte Collector t Collector t Characte Gate Char	mitter Resistance	Voltage	$V_{GE} = 4.0V$ $I_C = 15A,$ $V_{GE} = 4.5V$ $I_C = 10A, V_{CE} =$ $V_{GE} = 5V, See$ $I_C = 1.0mA,$	See Fig. 4 T _C = 150°C	10K -	- 1.17 1.50	1.60	Ω V V
n State $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $P_{CE(SAT)}$ $P_{CE(SAT)}$ $P_{CE(SAT)}$ $P_{CE(SAT)}$	Characte Collector t Collector t Characte Gate Char Gate to Er	mitter Resistance	Voltage	$\label{eq:VGE} \begin{split} & V_{GE} = 4.0V \\ & I_C = 15A, \\ & V_{GE} = 4.5V \\ \end{split} \\ & I_C = 10A, V_{CE} = \\ & V_{GE} = 5V, See \\ & I_C = 1.0mA, \\ & V_{CE} = V_{GE,} \\ & See \mbox{ Fig. 10} \end{split}$	$\frac{\text{See Fig. 4}}{\text{T}_{\text{C}} = 150^{\circ}\text{C}}$ = 12V, Fig. 14 $\frac{\text{T}_{\text{C}} = 25^{\circ}\text{C}}{\text{T}_{\text{C}} = 150^{\circ}\text{C}}$	10K - - 1.3 0.75	- 1.17 1.50 32 - -	1.60 1.80 - 2.2 1.8	Ω V V V V
N State V _{CE(SAT)} V _{CE(SAT)} /namic Q _{G(ON)}	Characte Collector t Collector t Characte Gate Char Gate to Er	mitter Resistance	Voltage	$V_{GE} = 4.0V$ $I_C = 15A,$ $V_{GE} = 4.5V$ $I_C = 10A, V_{CE} =$ $V_{GE} = 5V, See$ $I_C = 1.0mA,$ $V_{CE} = V_{GE},$	See Fig. 4 T _C = 150°C = 12V, Fig. 14 T _C = 25°C	10K - - - 1.3	- 1.17 1.50 32	1.60 1.80 - 2.2	Ω V V N nC V
n State V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} V _{GE(ON)} V _{GEP}	Characte Collector t Collector t Characte Gate Char Gate to Er	mitter Resistance	Voltage	$\label{eq:VGE} \begin{split} & V_{GE} = 4.0V \\ & I_C = 15A, \\ & V_{GE} = 4.5V \\ \end{split} \\ & I_C = 10A, V_{CE} = \\ & V_{GE} = 5V, See \\ & I_C = 1.0mA, \\ & V_{CE} = V_{GE,} \\ & See \mbox{ Fig. 10} \end{split}$	$\frac{\text{See Fig. 4}}{\text{T}_{\text{C}} = 150^{\circ}\text{C}}$ = 12V, Fig. 14 $\frac{\text{T}_{\text{C}} = 25^{\circ}\text{C}}{\text{T}_{\text{C}} = 150^{\circ}\text{C}}$	10K - - 1.3 0.75	- 1.17 1.50 32 - -	1.60 1.80 - 2.2 1.8	Ω V V V V
n State V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} (namic Q _{G(ON)} V _{GE(TH)} V _{GEP} witching	Characte Collector t Collector t Characte Gate Char Gate to Er Gate to Er	mitter Resistance	Voltage age	$V_{GE} = 4.0V$ $I_{C} = 15A,$ $V_{GE} = 4.5V$ $I_{C} = 10A, V_{CE} =$ $V_{GE} = 5V, See$ $I_{C} = 1.0mA,$ $V_{CE} = V_{GE},$ See Fig. 10 $I_{C} = 10A,$ $V_{CE} = 14V, R_{L} =$	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω,	10K - - 1.3 0.75	- 1.17 1.50 32 - -	1.60 1.80 - 2.2 1.8	Ω V V V V
n State V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} V _{GE(ON)} V _{GEP}	Characte Collector t Collector t Characte Gate Char Gate to Er Gate to Er Gate to Er Current Tu Current R	mitter Resistance	Voltage age esistive	$\label{eq:VGE} \begin{array}{l} V_{GE} = 4.0V \\ \hline I_{C} = 15A, \\ V_{GE} = 4.5V \\ \hline \end{array} \\ \begin{array}{l} I_{C} = 10A, \ V_{CE} = \\ V_{GE} = 5V, \ See \\ \hline I_{C} = 1.0mA, \\ V_{CE} = V_{GE}, \\ See \ Fig. \ 10 \\ \hline \\ I_{C} = 10A, \\ \hline \end{array} \\ \begin{array}{l} V_{CE} = 14V, \ R_{L} = \\ V_{GE} = 5V, \ R_{G} = \\ \hline \\ T_{J} = 25^{\circ}C, \ See \\ \end{array}$	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω, 1KΩ Fig. 12	10K - - 1.3 0.75 -	- 1.17 1.50 32 - - 3.0	1.60 1.80 - 2.2 1.8 -	Ω V V nC V V V
n State $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{GE(SAT)}$ $V_{GE(ON)}$ $V_{GE(TH)}$ V_{GEP} witching $t_{d(ON)R}$	Characte Collector t Collector t Collector t Characte Gate Char Gate to En Gate to En Gate to En Gate to En Current Tu Current Tu Current Tu	mitter Resistance ristics to Emitter Saturation to Emitter Saturation ristics rge mitter Threshold Volta mitter Plateau Voltage teristics urn-On Delay Time-R ise Time-Resistive urn-Off Delay Time-In	Voltage age esistive	$\label{eq:VGE} \begin{split} & V_{GE} = 4.0V \\ & I_C = 15A, \\ & V_{GE} = 4.5V \\ \end{split} \\ & I_C = 10A, V_{CE} = \\ & V_{GE} = 5V, See \\ & I_C = 1.0mA, \\ & V_{CE} = V_{GE}, \\ & See Fig. 10 \\ & I_C = 10A, \\ \cr & V_{CE} = 10A, \\ \cr & V_{CE} = 5V, R_G = \\ & T_J = 25^\circ C, See \\ & V_{CE} = 300V, L = \\ \cr \end{split}$	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω, 1KΩ Fig. 12 = 2mH,	10K - - 1.3 0.75 -	- 1.17 1.50 32 - 3.0 0.7 2.1 10.8	1.60 1.80 - 2.2 1.8 - 4 7 15	Ω V V V N V V V V V V V
n State $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{GE(SAT)}$ $V_{GE(TH)}$ V_{GEP} vitching $t_{d(ON)R}$ t_{rR}	Characte Collector t Collector t Collector t Characte Gate Char Gate to En Gate to En Gate to En Gate to En Current Tu Current Tu Current Tu	mitter Resistance	Voltage age esistive	$\label{eq:VGE} \begin{array}{l} V_{GE} = 4.0V \\ \hline I_{C} = 15A, \\ V_{GE} = 4.5V \\ \hline \end{array} \\ \begin{array}{l} I_{C} = 10A, \ V_{CE} = \\ V_{GE} = 5V, \ See \\ \hline I_{C} = 1.0mA, \\ V_{CE} = V_{GE}, \\ See \ Fig. \ 10 \\ \hline \\ I_{C} = 10A, \\ \hline \end{array} \\ \begin{array}{l} V_{CE} = 14V, \ R_{L} = \\ V_{GE} = 5V, \ R_{G} = \\ \hline \\ T_{J} = 25^{\circ}C, \ See \\ \end{array}$	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω, 1KΩ Fig. 12 = 2mH, 1KΩ	10K - - 1.3 0.75 - - -	- 1.17 1.50 32 - - 3.0 0.7 2.1	1.60 1.80 - 2.2 1.8 - 4 7	Ω V V N
n State $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{GE(SAT)}$ $V_{GE(ON)}$ $V_{GE(TH)}$ V_{GEP} vitching $t_{d(ON)R}$ t_{rR} $t_{d(OFF)L}$	Characte Collector t Collector t Collector t Characte Gate Char Gate to Er Gate to Er Gate to Er Current Tu Current Tu Current Tu Current Tu	mitter Resistance ristics to Emitter Saturation T to Emitter Saturation T eristics rge mitter Threshold Volta mitter Plateau Voltage teristics urn-On Delay Time-R ise Time-Resistive urn-Off Delay Time-In	Voltage age esistive ductive	$\label{eq:VGE} \begin{split} & V_{GE} = 4.0V \\ & I_C = 15A, \\ & V_{GE} = 4.5V \\ \end{split} \\ & I_C = 10A, V_{CE} = \\ & V_{GE} = 5V, See \\ & I_C = 1.0mA, \\ & V_{CE} = V_{GE}, \\ & See Fig. 10 \\ & I_C = 10A, \\ \cr & V_{CE} = 10A, \\ \cr & V_{CE} = 5V, R_G = \\ & T_J = 25^\circ C, See \\ & V_{CE} = 300V, L = \\ & V_{GE} = 5V, R_G = \\ \cr & V_{CE} = 5V, R_G = \\ \hline & V_{CE} = 5V, R_G$	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω, 1KΩ Fig. 12 = 2mH, 1KΩ Fig. 12 = 2mH, 1KΩ Fig. 12 = 670 μH,	10K - - 1.3 0.75 - - -	- 1.17 1.50 32 - 3.0 0.7 2.1 10.8	1.60 1.80 - 2.2 1.8 - 4 7 15	Ω V V V N V V V V V V V V V V V V
n State $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} vitching $t_{d(ON)R}$ t_{rR} $t_{d(OFF)L}$ t_{fL} SCIS	Characte Collector t Collector t Collector t Characte Gate Char Gate to Er Gate to Er Gate to Er Current Tu Current Tu Current Tu Current Tu	mitter Resistance	Voltage age esistive ductive	$\begin{split} & V_{GE} = 4.0V \\ & I_C = 15A, \\ & V_{GE} = 4.5V \\ & I_C = 10A, V_{CE} = \\ & V_{GE} = 5V, See \\ & I_C = 1.0mA, \\ & V_{CE} = V_{GE}, \\ & See Fig. 10 \\ & I_C = 10A, \\ & V_{CE} = 5V, R_G = \\ & T_J = 25^\circ C, See \\ & V_{CE} = 300V, L = \\ & V_{GE} = 5V, R_G = \\ & T_J = 25^\circ C, See \\ & T_J = 25^\circ C, See \\ & T_J = 25^\circ C, See \\ & T_J = 25^\circ C, L = 0 \\ & R_G = 1K\Omega, V_{GE} \\ & V_{GE} V_{GE} $	See Fig. 4 $T_C = 150^{\circ}C$ Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CE} = 12V$ = 1Ω, 1KΩ Fig. 12 = 2mH, 1KΩ Fig. 12 = 2mH, 1KΩ Fig. 12 = 670 μH,	10K - - 1.3 0.75 - - - - - - - -	- 1.17 1.50 32 - - 3.0 0.7 2.1 10.8 2.8	1.60 1.80 - 2.2 1.8 - 4 7 15 15	Ω V V V N V V V V V V V V V V V V

ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3


ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3 Rev. C4, November 2009



ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3 Rev. C4, November 2009

ISL9V5036S3S / ISL9V5036P3 / ISL9V5036S3

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] EfficientMax™ EZSWITCH™* Ŀ'_ DEUXPEED™ R F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™

FlashWriter® FPS™ F-PES™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP SPM™

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Отм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SupreMOS™

ESYSTEM[®]* The Power Franchise[®]

power*

TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™*

UHC[∞] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS ON NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 143

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC